Volume 2, Issue 3, September 2017, Page: 107-113
Computer Simulation of the Dielectrics Properties in the Dense Circles
Alioune Aidara Diouf, Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal; Department of Nanoscience & Nanotechnology Research, Dakar American University of Science & Technology, Somone, Senegal
Bassirou Lo, Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal
Famara Dieme, Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal
Abdourahmane Mbodji, Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal
Aboubaker Chedikh Beye, Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal
Received: Jun. 10, 2017;       Accepted: Jun. 27, 2017;       Published: Jul. 27, 2017
DOI: 10.11648/j.css.20170203.13      View  1417      Downloads  66
Abstract
To investigate the dielectric properties in the dense circles a program based on the Lorentz model is implemented. So, to understand the importance of the certain physical parameters (spectral width, specific pulsation and the number of particle) on the dielectric properties of the dense media, one varied these parameters to observe their influence on the real and imaginary susceptibility as well as the indication of the environment. Besides knowing that the Drude model is a particular case of the Lorentz model, a comparative investigation has been done to observe their behavior according to certain parameters.
Keywords
Dielectric, Susceptibilities, Permittivity, Refractive Index, Pulsation, Width Spectral, Particles
To cite this article
Alioune Aidara Diouf, Bassirou Lo, Famara Dieme, Abdourahmane Mbodji, Aboubaker Chedikh Beye, Computer Simulation of the Dielectrics Properties in the Dense Circles, Colloid and Surface Science. Vol. 2, No. 3, 2017, pp. 107-113. doi: 10.11648/j.css.20170203.13
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
S. S. Kulkarni, C. D. Lokhande, Materials Chemistry and Physics 82(2003) 151-156.
[2]
K. G. Gatos, J. Mrtínez Alcàzar, G. C. Psarras, R. Thomann, J. Karger-Kocsis, Composites Science and Technology 67(2007) 157-167.
[3]
Mengyang Li, Anibal A. Acero, Zhengqurg Huang and Stuart A. Rice, NATURE. Vol. 367. January 1994.
[4]
Kenneth C. Janda, John C. Hemminger, Joh S. Winn, Stewart E. Novick, Stephen J. Harris, and William Klemperer, The Journal of Chemical Physics, Vol. 63, No. 4, 15 August 1975.
[5]
John V. Dugan Jr. and John L. Magee, The Journal of Chemical Physics 47, 3103(1967).
[6]
E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, Physical Review B Volume 50, Number 3, 15 July 1994-I.
[7]
E. A. GUGGENHEIM «The conceptions of Electrical Potential Difference between two Phases and the Individual Activities of Ions», Copenhagen December 22, 1928.
[8]
Robert M. Mc Meeking, Chad M-Landis, Journal of Applied Mechanics, July 2005, Vol. 72.
[9]
Bertrand Dubus-Jean Claude Debus-Jocelyne Coutte, Revue Européenne des Eléments Finis. Volume 8-nº5-6/ 1999, pages 581 à 606.
[10]
Ricardo A. Depine and Akhlesh Lakhtakia, arXiv: Physics/ 0311029v1 [Physics-Optics] 6. Nov 2003.
[11]
D. Rytz, U. T. Höchli, H. Bilz, Physical Review B, Volume 22, Number 1, 1 July 1980.
[12]
E. L. Colla, I. M. Reaney, and N. Setter, Journal of Applied Physics, Vol. 74, No. 5, 1 September 1993.
[13]
Daniel Rinaldi, Jean-Louis Rivail, Theoret. Chim. Acta (Berl) 32, 57-70 (1973).
[14]
Victor. M. Anisimov, Igor Vowbyov, Benoît Roux, and Alexander D. Mackerell, Jr. Journal of Chemical Theory and Computation. 2007, 3, 1927-1946.
[15]
J. E. Sipe, Robert W. Boyd, Physical Review A, volume 46, Number 3, 1 August 1992.
[16]
B. A. Woodahl, J. J. Coy, E. Fischbach, Physical Review Letters, PRL 98, 150805(2007), 13 APRIL 2007.
[17]
E. Prodan, Allen Lee, P. Nordhander, Chemical Physics Letters 360(2002) 325-332, 10 July 2002.
[18]
J. J. Hopfield, physical review, vol. 112, 5, 1555-1567(1958)
[19]
J. J. Hopfield, D. G. Thomas, physical review, vol. 132, 2, 563-572(1963)
[20]
B. Lo, M. B. Gaye, A. Dioum, C. M. Mohrain, M. S. Tall, J. M. Chauveau, M. Doninelli Tesseire, S. Ndiaye, A. C. Beye, Appl. Phys. A (2014) 115: 257-261.
[21]
M. Zaghrioui, V. Ta Phuoc, R. A. Souza, M. Gervais, PHYSICAL REVIEW B 78, 184305 (2008).
[22]
Marc Sheffler, Martin Dressel, Martin Jourdan, Hermann Adrian, Physica B 378-380(2006) 993-994.
[23]
Alioune Aidara Diouf, Bassirou Lo, Alhadj Hisseine Issaka Ali, Aboubaker Chedikh Beye. Comparative Investigation and Generalized of the Core/Shell Effects on the Magnetics Properties in the Ferromagnetic Cubic Nanoparticles by the Transverse Ising Model. American Journal of Nanomaterials. Vol. 4, No. 1, 2016, pp 1-7. http://pubs.sciepub.com/ajn/4/1/1
[24]
Alioune. A. DIOUF, Bassirou. LO, Moustapha. BA, Mouhamed. B. GAYE, Ibrahima. NIANG, Mamadou. MBAYE, Pape. M. WADE and Aboubaker. C. Beye. (2016); TEMPERATURE AND POLARISATION DEPENDENT REFLECTIVITY OF THE C FREE EXCITON OF A-PLANE ORIENTED ZNO EPILAYERS GROWN BY PLASMA-ASSISTED MOLECULAR BEAM EPITAXY. Int. J. of Adv. Res. 4 (2). 286-293] (ISSN 2320-5407). www.journalijar.com
Browse journals by subject