Volume 2, Issue 2, June 2017, Page: 76-80
Microstructural and High Tc Dielectric Properties of Microwave Sintered Ba0.7Ca0.3TiO3 (BCT) Ceramic
Sagar M. Mane, Department of Physics, the Institute Of Science, Mumbai, India; Department of Physics, Sahakar Maharshi Shankarrao Mohite Patil Mahavidyalaya, Natepute, Solapur, India
Pravin M. Tirmali, Department of Physics, the Institute Of Science, Mumbai, India
Snehal L. Kadam, Department of Physics, the Institute Of Science, Mumbai, India
Chandrakant B. Kolekar, Department of Physics, Sahakar Maharshi Shankarrao Mohite Patil Mahavidyalaya, Natepute, Solapur, India
Shrinivas B. Kulkarni, Department of Physics, the Institute Of Science, Mumbai, India
Received: Jan. 13, 2017;       Accepted: Mar. 11, 2017;       Published: Apr. 10, 2017
DOI: 10.11648/j.css.20170202.15      View  1335      Downloads  67
Abstract
Nanopowder of Ba0.7Ca0.3TiO3 (BCT) lead free ferroelectric ceramic was synthesized by hydroxide co-precipitation method. As-synthesized powder is sintered using the microwave sintering technique at different temperature 1100°C and 1200°C. Sintered ceramic samples were investigated for its structural, morphological, and temperature dependent dielectric properties. Structural analysis confirms biphasic crystal structure, tetragonal phase corresponding to BaTiO3 lattice and orthorhombic phase resulting from the CaTiO3 lattice. Scanning electron microscope images reveals the formation of grains with higher density. Ferroelectric-Paraelectric transition (Tc) of the material shifts towards higher temperature (Tc ~ 155°C) with maximum dielectric constant and low loss tangent.
Keywords
Ferroelectrics, Microwave Sintering, Dielectric Properties, Microstructure, Phase Transformation
To cite this article
Sagar M. Mane, Pravin M. Tirmali, Snehal L. Kadam, Chandrakant B. Kolekar, Shrinivas B. Kulkarni, Microstructural and High Tc Dielectric Properties of Microwave Sintered Ba0.7Ca0.3TiO3 (BCT) Ceramic, Colloid and Surface Science. Vol. 2, No. 2, 2017, pp. 76-80. doi: 10.11648/j.css.20170202.15
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
V. Sreenivas Puli, D. K. Pradhan, B. C. Riggs, D. B. Chrisey, R. S. Katiyar. J. Alloy. Compd.; 2014, 584, 369.
[2]
Z. Yu, C. Ang, R. Guo, A. S. Bhalla. J. Appl. Phys.; 2002, 92, 1489.
[3]
S. M. Mane, P. M. Tirmali, D. J. Salunkhe, P. B. Joshi, C. B. Kolekar, S. B. Kulkarni. J. Mater Sci: Mater Electron.; 2016, 27 (7), 7204.
[4]
S. Mane, P. Tirmali, S. Kadam, A. Tarale, C. Kolekar, S. Kulkarni. J. Chin. Adv. Mate. Soci.; 2016, 4 (4), 269.
[5]
P. Victor, R. Ranjith, S. B. Krupanidhi. J. Appl. Phys.; 2003, 94 (12), 7702.
[6]
R. S. da Silva, J. C. M’Peko, L. da Costa Fontes, A. C. Hernandes. Mate. Res.; 2009, 12 (3), 287.
[7]
O. P. Thakur, C. Prakash, D. K. Agrawal. Mate. Sci. Engg. B.; 2002, 96, 221.
[8]
O. P. Thakur, C. Prakash, D. K. Agrawal. Mate. Lett.; 2002, 56, 970.
[9]
X. Hao. J. Adv. Dielect.; 2013, 3 (1), (1330001) 1.
[10]
M. R. Panigrahi, S. Panigrahi. Phys. B.; 2010, 405, 2556.
[11]
N. Baskaran, H. Chang. Mate. Chem. Phys.; 2002, 77, 889.
[12]
Sonia, R. K. Patel, P. Kumar, C. Prakash, D. K. Agrawal. Ceram. Int.; 2012, 38, 1585.
Browse journals by subject