Volume 2, Issue 2, June 2017, Page: 66-75
Preparation and Characterization of Polymeric Nanofibers by Electrospinning as Potential Antibacterial Materials
Yasser Assem, Department of Polymers and Pigments, National Research Centre, Dokki, Giza, Egypt
A. I. Khalaf, Department of Polymers and Pigments, National Research Centre, Dokki, Giza, Egypt
Received: Jan. 31, 2017;       Accepted: Feb. 20, 2017;       Published: Mar. 3, 2017
DOI: 10.11648/j.css.20170202.14      View  1513      Downloads  87
Abstract
Quaternized PDMAEMA (qPDMAEMA) was used to prepare nanofibers by electrospinning. At first the DMAEMA monomer was quaternized using Hexyl, dodecyl and hexadecyl bromide. Then the quaternized DMAEMA was polymerized by free radical polymerization. This polymer was characterized by 1HNMR, GPC, and thermal analysis (DSC and TGA). The (qPDMAEMA) was blended with PVA in different ratios (20/80, 25/75 and 50/50). The antibacterial properties of the prepared blends were examined against two strains type, the gram positive M. luteus and the gram negative E.coli. The antimicrobial activity showed that all blends with different alkyl side chain length (i.e. 6, 12, and 16) are highly active against M. luteus and no growth of the bacteria was observed after incubation period of 96 h, but in case of E. coli, the antibacterial activity is different. The blend having short alkyl side chain (6) are very active and can kill all the bacteria colonies. Blends that contain longer side chains are mostly inactive. However the blend compositions of PVA/PDMAEMA-12 (80/20 and 75/25) exhibit a good antimicrobial effect against E. Coli. The minimum bactericidal concentration (MBC) was obtained by determining the minimum polymer concentration at which no growth was observed. qPDMAEMA based fibers were produced using a solution blend of PDMAEMA and PVA. The quaternized PDEAMMAs/PVA blends were electrospun in ethanol. The concentration of the polymer was as high as 20% in order to get fibers. The diameter of formed fibers was found to be around 500 nm.
Keywords
Nanofibers, PDMAEMA, Electrospinning, Antibaterial Polymers, Free Radical Polymerization
To cite this article
Yasser Assem, A. I. Khalaf, Preparation and Characterization of Polymeric Nanofibers by Electrospinning as Potential Antibacterial Materials, Colloid and Surface Science. Vol. 2, No. 2, 2017, pp. 66-75. doi: 10.11648/j.css.20170202.14
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Patel, M. B.; Patel, S. A.; Ray, A.; Patel, R. M. J. Appl. Polym. Sci. 2003, 89, 895-900.
[2]
Park, E.-S.; Lee, H.-J.; Park, H.-Y.; Kim, M.-N.; Chung, K.-H.; Yoon, J.-S. J. Appl. Polym. Sci. 2001, 80, 728-736.
[3]
Ranucci, E.; Ferruti, P. Polymer 1991, 32, 2876-2879.
[4]
Bowersock, T. L.; Woodyard, L.; Hamilton A. J.; Deford, J. A. J. Controlled Release 1994, 31, 237-243.
[5]
Kenawy, E.-R. J. Appl. Polym. Sci. 2001, 82, 1364-1374.
[6]
Kenawy, E.-R.; Abdel-Hay, F. I.; El-Shanshoury, A. E.-R.; El-Newehy, M. H. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 2384-2393.
[7]
Tan, S.; Li, G.; Shen, J.; Liu, Y.; Zong, M. J. Appl. Polym. Sci. 2000, 77, 1869-1876.
[8]
Li, G.; Shen, J. J. Appl. Polym. Sci. 2000, 78, 676-684.
[9]
Kamel, G. D.; Pfaller, M. A.; Rempe, L. E.; Jebson, P. J. R. J. Am. Med. Assoc. 1991, 265, 2364-2368.
[10]
Worley, S. D.; Sun, G. Trends Polym. Sci. 1996, 4, 364-370.
[11]
Woo, G. L. Y.; Yang, M. L.; Yin, H. Q.; Jaffer, F.; Mittelman, M. W.; Santerre, J. P. J. Biomed. Mater. Res. 2002, 59, 35-45.
[12]
Acharya, V.; Prabha, C. R.; Narayanamurthy, C. Biomaterials 2004, 25, 4555-4562.
[13]
Jiang, H.; Manolache, S.; Lee Wong, A. C.; Denes, F. S. J. Appl. Polym. Sci. 2004, 93, 1411-1422.
[14]
Hume, E. B. H.; Baveja, J.; Muir, B.; Schubert, T. L.; Kumar, N.; Kjelleberg, S.; Griesser, H. J.; Thissen, H.; Read, R.; Poole-Warren, L. A.; Schindhelm, K.; Willcoxy, M. D. P. Biomaterials 2004, 25, 5023-5030.
[15]
Baveja, J. K.; Li, G.; Nordon, R. E.; Hume, E. B. H.; Kumar, N.; Willcox, M. D. P.; Poole-Warren, L. A. Biomaterials 2004, 25, 5013-5021.
[16]
Caillier, L; Givenchy, E T; Levy, R; Vandenberghe, Y; Geribaldi, S; Guittard, F; Euro J. Med Chem 44 (2009) 3201–3208].
[17]
Roseeuw, E.; Coessens, V.; Schacht, E.; Vrooman, B.; Domurado, D.; Marchal, G. J. Mater. Sci.: Mater. Med. 1999, 10, 743.
[18]
Coessens, V.; Schacht, E.; Domurado, D. J. Controlled Release 1997, 47, 283.
[19]
Yang, M.; Santerre, J. P. Biomacromolecules 2001, 2, 134.
[20]
Dizman, B.; Elasri, M. O.; Mathias, L. J. Biomacromolecules 2005, 6, 514.
[21]
Sauvet, G.; Dupont, S.; Kazmierski, K.; Chojnowski, J. J. Appl. Polym. Sci. 2000, 75, 1005.
[22]
Abel, T.; Cohen, J. I.; Engel, R.; Filshtinskaya, M.; Melkonian, A.; Melkonian, K. Carbohydr. Res. 2002, 337, 2495.
[23]
Borman, S. Sci. Technol. 2001, 79 (22), 13.
[24]
Dizman, B.; Elasri, M. O.; Mathias, L. J. J. Appl. Polym. Sci. 2004, 94, 635.
[25]
Ikeda, T.; Yamaguchi, H.; Tazuke, S. Antimicrob. Agents Chemother. 1984, 26, 139.
[26]
Kanazawa, A.; Ikeda, T.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 335.
[27]
Kanazawa, A.; Ikeda, T.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 1467.
[28]
Ikeda, T.; Hirayama, H.; Yamaguchi, H.; Tazuke, S.; Watanabe, M. Antimicrob. Agents Chemother. 1986, 30, 132.
[29]
Nonako, T.; Noda, E.; Kurihara, S. J. Appl. Polym. Sci. 2000, 77, 1077.
[30]
Seong, H.; Whang, H. S.; Ko, S. J. Appl. Polym. Sci. 2000, 76, 2009.
[31]
Schroeder, J. D.; Scales, J. C. U. S. Patent 20020051754, 2002.
[32]
Kawabata, N.; Fujita, I.; Inoue, T. J. Appl. Polym. Sci. 1996, 60, 911.
[33]
Gabrielska, J.; Sarapuk, J.; Przestalski, S.; Wroclaw, P. Tenside, Surfactants, Deterg. 1994, 31, 296.
[34]
Ikeda, T.; Tazuke, S.; Suzuki, Y. Makromol. Chem. 1984, 185, 869.
[35]
McDonnell, G.; Russell, A. D. Clin. Microbiol. ReV. 1999, 12, 147.
[36]
Ranucci, E.; Ferruti, P.; Neri, M. G. J. Biomater. Sci., Polym. Ed. 1991, 2 (4), 255.
[37]
Przestalski, S.; Sarapuk, J.; Kleszczynska, H.; Gabrielska, J.; Hladyszowski, J.; Trela, Z.; Kuczera, J. Acta Biochim. Pol. 2000, 47, 627.
[38]
Tashiro, T. Macromol. Mater. Eng. 2001, 286, 63.
[39]
Ikeda, T.; Tazuke, S. Polym. Prepr. 1985, 26, 226-227.
[40]
Yancheva E., Paneva D., Maximova V., Mespouille L., Dubois P., Manolova N., Rashkov I., Biomacromol, 2007, 8, 976.
[41]
Wang H, Wang L, Zhang P, Yuan L, Yu Q, Chen H. Colloids Surf B Biointerfaces, 2011, 83, 355.
[42]
Joo Y. T., Jung K. H., Kim M. J., Kim Y., Appl Polym Sci., 2013, 127, 1508.
[43]
Bubel K., Zhang Y., Assem Y., Agarwal S., Greiner A., Macromolecules 2013, 46, 7034.
[44]
Butler G. B. and Bunch R. L.. J Am Chem Soc, 1949, 71, 3120-3122.
[45]
Panarin, E. F.; Solovaskii, M. V.; Zaikina, N. A.; Afinogenov, G. E. Makromol. Chem. Suppl. 1985, 9, 25-33.
[46]
Chen, C. Z.; Beck-Tan, N. C.; Dhurjati, P.; Van Dyk, T. K.; LaRossa, R. A; Cooper, S. L. Biomacromolecules 2000, 1, 473-480.
[47]
Kenawy E. R., Worley S. D., Broµghton R., Biomacromol. 2007, 8, 1359.
Browse journals by subject