Volume 2, Issue 1, March 2017, Page: 26-36
Surface Characterization of Plasma Immersion Nitrogen Ion Implanted Austenitic Stainless Steel
Pandurangan Saravanan, R&D Center for Iron and Steel, Steel Authority of India Limited, Ranchi, India
Vngaranahalli Srinivasan Raja, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, India
Received: Nov. 29, 2016;       Accepted: Jan. 3, 2017;       Published: Jan. 31, 2017
DOI: 10.11648/j.css.20170201.14      View  2821      Downloads  68
Abstract
Plasma immersion ion implantation (PIII) of nitrogen has been performed on three austenitic stainless steels namely, Type 304L SS, MnSS-1 (16%Cr-6%Mn-4Ni) and MnSS-2 (16%Cr-9%Mn) with at three different temperatures namely, 250, 380 and 500°C for 3 h. The GXRD studies shows that mixed iron nitride phases were formed along with expanded austenitic, when sample implanted at 250°C and 380°C. These nitrides are with different stoichiometry along the thickness and their formation is less favorable in nickel free Mn alloy at lower implantation temperature and timing (250°C for 3 h). On higher implantation condition (500°C, 6 h), Ni promotes the ′ formation and Mn suppress the ′ formation. Microhardness measurements revealed a significant increase in hardness after PIII treatment for all the alloys under investigation, but it is more effective in Ni free Mn containing SS.
Keywords
Plasma Immersion Ion Implantation, XRD, GXRD, Hardness
To cite this article
Pandurangan Saravanan, Vngaranahalli Srinivasan Raja, Surface Characterization of Plasma Immersion Nitrogen Ion Implanted Austenitic Stainless Steel, Colloid and Surface Science. Vol. 2, No. 1, 2017, pp. 26-36. doi: 10.11648/j.css.20170201.14
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
W. Ensinger, Surface & Coating Technolology, 100-110 (1998) 341-352.
[2]
Linda Gil, Sonia Brühl, Lorena Jiménez, Ovídio Leon, Rafael Guevara, Mariana and H. Staia, Surf. Coat. Technol. 201 (2006) 4424–4429.
[3]
Xiubo Tian and Paul K. Chu, Scripta mater. 43 (2000) 417-422.
[4]
P. Saravanan, V.S. Raja and S. Mukherjee, Surf. Coat. Technol.201 (1998) 8131-8135.
[5]
Lei M. K. and Zhu X. M., Biomaterials,22 (2001) 641-647.
[6]
J.R. Conrad, R.A. Dodd, F.J. Worzala, and X. Qiu, Surface & Coating Technolology, 36, (1988) 927-937.
[7]
S. Mandl, D. Manova, H. Neumann, M.T. Pham, E. Richter, and B. Rauschenbach, Surf. Coat. Technol. 200 (2005) 104-108.
[8]
L. Escalada, J. Lutz, S. Mändl, D. Manova, H. Neumann, and S. Simison, Surf. Coat. Technol.211 (2012) 76-79.
[9]
Yanhui Zhao, Baohai Yu, Limin Dong, Hao Du, and Jinquan Xiao, Surf. Coat. Technol.210 (2012) 90-96.
[10]
A. Fossati, F. Borgioli, E. Galvanetto, and T. Bacci, Corros. Sci.48 (2006) 1513–1527.
[11]
K.S. Wang, H.L. Che, M.K. Lei, Surf. Coat. Technol.288 (2016) 30-35.
[12]
M. CASTRO-COLIN, W. DURRER, J. A. LÓPEZ, E. RAMIREZ-HOMS, Journal of Iron and Steel Research, International, 23, 4, (2016), 380-384.
[13]
Y. Li, Z. Wang, L. Wang, Applied Surface Science, 298, (2014), 243-250.
[14]
D. Manova, S. Mändl, H. Neumann, B. Rauschenbach, Surf. Coat. Technol.256, (2014), 64-72.
[15]
K. Ram Mohan Rao, S. Mukherjee, P.M. Raole, and I. Manna, Surf. Coat. Technol.200 (2005) 2049-2057.
[16]
P. R. Levey, and A. Van Bennekom, Corrosion, 51 (1995) 911-921.
[17]
R.D. Pehlke, and J.F. Elliatt, Transactions of Metallurgical Society of AIME, (1960) 218, 1088-1101.
[18]
H. Pelletier, D. Muller, P. Mille, A. Cornet, and J.J. Grob Surf. Coat. Technol. 151 - 152 (2002) 377-382.
[19]
Y. Li, L. Wang, J. Xu, and D. Zhang, Surf. Coat. Technol.206 (2012) 2430-2437.
[20]
G.A. Collins, R. Hutchings, K.T. Short, J. Tendys, X. Li, and M. Samandi, Surf. Coat. Technol. 74-75 (1995) 417-424.
[21]
J. Wang, J. Xiong, Q. Peng, H. Fan, Y. Wang, G. Li, and B. Shen, Mater. Charact. 60 (2009) 97-203.
[22]
Y. Li, L. Wang, J. Xu, and D. Zhang, Surf. Coat. Technol.206 (2012) 2430-2437.
[23]
M. Samandi, B. A Shedden, D. J. Smith, G. A.Collins, R. Hutchings and J. Tendys, Surface & Coatings Technology,59 (1993) 261-266.
[24]
S. Mukherjee, J. Chakraborty, S. Gupta, P. M. Raole, P. I. John, K. R. M. Rao and I. Manna, Surface & Coating Technology, 156 (2002) 103-109.
[25]
P.A. Dearnley, A. Namver, G. G. A. Hibberd and T. Bell, in: E. Broszeit, W.D. Munz, H. Oechsner, K.-T. Rie, G.K. Wolf (Eds.), Plasma Surface Engineering, vol. 1, DGM Informationsgesellschaft, Oberursel, “Proceedings of the 1st International Conference on Plasma Surface Engineering, Garmisch – Partenkirchen”, 1989, p. 219. Vol 1 (1989) 219-226.
[26]
K. Ichii, K. Fujimura and T. Takase, E. Broszeit, W.D. Munz, H. Oechsner, K.-T. Rie, G.K. Wolf(Eds.), Plasma Surface Engineering, vol. 1, DGM Informationsgesellschaft, Oberursel, “Proceedings of the 1st International Conference on Plasma Surface Engineering, Garmisch –Partenkirchen”, (1989) 1187-1192.
[27]
E. Menthe and K. T. Rie, Surface & Coatings Technology, 116-119 (1999) 199-204.
[28]
D. J. Haen., C. Quaeyhaegens, G. Knuyt, L. De Schepper, L.M. Stals, and Van M. Stappen, Surface and Coating Technology, 60 (1993)468-473.
[29]
F. Borgioli, A. Fossati, G. Matassini, E. Galvanetto, and T. Bacci, Surf. Coat. Technol. 204 (2010) 3410-3417.
[30]
J. Talonen, and H. Hänninen, Acta Mater. 55, 18, (2007) 6108-18.
[31]
N. Suutala, Metallurgical Transaction A, (1982) 13A, 2121-2130.
[32]
C. Qiu, Metallurgical Transaction A, (1993) 24A, 629-645.
Browse journals by subject