Volume 1, Issue 1, December 2016, Page: 10-13
Simple Synthesis of Vanadium Oxide (V2O5) Nanorods in Presence of CTAB Surfactant
Majid Farahmandjou, Department of Physics, Varamin Pishva Branch, Islamis Azad University, Varamin, Iran
Nilofar Abaeyan, Department of Physics, Varamin Pishva Branch, Islamis Azad University, Varamin, Iran
Received: Nov. 25, 2016;       Accepted: Dec. 8, 2016;       Published: Jan. 16, 2017
DOI: 10.11648/j.css.20160101.13      View  2984      Downloads  84
Abstract
Structural and morphological properties of vanadium oxides (V2O5) nanoparticles have been studied. V2O5 nanoparticles were synthesized using a simple chemical method by sodium metavanadate as precursor and Cetyltrimethylammonium bromide (CTAB) as surfactant. The samples were characterized by high resolution transmission electron microscopy (HRTEM), field effect scanning electron microscopy (FESEM) and X-ray diffraction (XRD). As there are many forms of vanadium oxides produced during this process, x-ray diffraction (XRD) technique was used to identify V2O5 phase. The size of as-prepared nanoparticles was around 5 nm as estimated by HRTEM technique and average diameter of annealed one was around 9 nm. The surface morphological studies from SEM depicted the formation of nanorods after annealing process. The effect of CTAB surfactant on the particle morphology was also studied and the results show that the size of particles reduce to 10 nm in presence of CTAB surfactant. FTIR spectrum shows the presence of V-O and V-O-V stretching mode of V2O5. The UV–vis absorption show the small band gap is found to be 2.20 eV.
Keywords
Vanadium Oxide Nanoparticles, CTAB, Surfactant, Chemical Synthesis
To cite this article
Majid Farahmandjou, Nilofar Abaeyan, Simple Synthesis of Vanadium Oxide (V2O5) Nanorods in Presence of CTAB Surfactant, Colloid and Surface Science. Vol. 1, No. 1, 2016, pp. 10-13. doi: 10.11648/j.css.20160101.13
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
S. F. Cogan, N. M. Nguyen, S. T. Perrotti, R. D. Rauh, Proc. Soc. Photo-Opt. Instrum. Eng. 57, 1016 (1988).
[2]
C. G. Granqvist, Solid State Ionics 70, 678 (1994).
[3]
C. M. Julien, Ionics 2, 169 (1996).
[4]
M. E. Spahr, P. S. Bitterli, R. Nesper, O. Haas, P. Novak, J. Electrochem. Soc. 146, 2780 (1999).
[5]
E. A. Meulenkamp, W. van Klinken, A. R. Schlatmann, Solid State Ionics126, 235 (1999).
[6]
J. Haber, M. Witko, R. Tokarz, Appl. Catalysis A General 157, 3 (1997).
[7]
C. M. Lampert, C. G. Granqvist, editors, large Area Chromogenic materials and Devices for Transmittance Control, Bellingham: SPIE, (1990).
[8]
S. D. Hansen, C. R. Aita, J. Vac. Sci. Technol. A3, 660 (1985).
[9]
MSR. Khan, K. A. Khan, W. Estrada, C. G. Granqvist, J. Appl. Phys. 5, 69(1991).
[10]
Y. Fujita, K. Miyazaki, T. Tatsuyama, Jap. J. Appl. Phys. 24, 1082 (1985).
[11]
K. Sieradzka, D. Wojcieszak, D. Kaczmarek, J. Domaradzki, G. Kiriakidis, E. Aperathitis, V. Kambilafka, F. Placido, S. Song, ‘Optica Applicata’, (2011), 9 463-469.
[12]
V. S. Reddy Channu, R. Holze, B. Rambabu, Soft Nanoscience Letters, (2011), 1, 66-70.
[13]
M. Mousavi, A. Kompany, N. Shahtahmasebi, M. M. Bagheri-Mohagheghi, Adv. Manuf. (2013), 1, 320–328.
[14]
B. Vijaykumar, K. Sangshetty, G. Sharanappa, Int. J. Eng. Res. App. (2012) 2,611-616.
[15]
N. N. Dinh, T. T. Thao, V. N. Thuc, N. T. Thuy, J. Sci. Math. Phys., (2010), 26 201-206.
Browse journals by subject